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ABSTRACT 

Nowadays deterministic building simulation models are commonly used in building design. However, most of the parameters 

involved are stochastic variables and as a consequence, a probabilistic approach would give more information on the spread of 

the results. In the framework of IEA ECBCS Annex 55, it is the aim to develop a method to estimate the balance between 

energy savings and risks, such as mould growth, algae growth and low indoor air quality when retrofitting existing dwellings. 

Such a method, based on a probabilistic approach, would make it possible to choose the solution with the best balance between 

large energy savings and low risks. This paper illustrates a probabilistic approach for an old cavity wall which is retrofitted 

with post-injected insulation. It shows how a decision tool can be constructed and how it can be used in a retrofitting problem. 

With the developed methodology it can be decided which insulation material to choose to reduce the heat loss and to minimise 

the risk of mould growth. The aim of the paper is to illustrate the methodology and possibilities of a probabilistic approach.  

1. Introduction 

These days, it is common to retrofit old buildings to save 

energy. Unfortunately, it is difficult to predict the energy 

savings and there might also be a risk of hygrothermal failure 

when applying certain retrofit measures. So far, no real 

method is available to estimate the balance between energy 

savings and risks. 

Deterministic building simulation models are commonly used 

in building design. However, most of the parameters involved 

are stochastic variables, e.g. material properties, 

workmanship, external climate and user behaviour. A 

probabilistic approach will yield knowledge of the possible 

spread on the results. This approach was introduced into 

building physics at the end of the eighties (Hokoi and 

Matsumoto 1988; Lomas and Eppel 1992). More recently the 

probabilistic modelling is developing very fast (MacDonald 

2002, de Wit and Augenbroe 2002, Pietrzyk et al. 2004, 

Haarhof and Mathews 2006, Corrado and Mechri 2009, 

Domínguez-Munõz et al. 2010). They all focus on 

uncertainty or sensitivity analysis. 

Within IEA ECBCS Annex 55 (Hagentoft 2010) it is the aim 

to develop a probabilistic framework for retrofitting existing 

dwellings. Such a method would make it possible to choose 

the solution with the best energy savings and the least side 

effects. These side effects can be mould growth, algae 

growth, low indoor air quality and so on. 

This paper presents a probabilistic approach to evaluate 

energy savings together with hygrothermal risks. The case 

study focuses on mould growth, when retrofitting an existing 

cavity wall with post-injected insulation. The aim of this 

example is not to give correct solutions, but rather to 

illustrate the methodology and the possibilities of a 

probabilistic approach. 

Section 2 describes the case study and the model used for the 

probabilistic analysis. The main sections handle the results of 

uncertainty analysis (section 3), a decision tool based on 

these results, which can be used to choose between 

retrofitting solutions (section 4), and a sensitivity analysis 

(section 5) to limit the input parameters which have to be 

taken into account.  The final section deals with the different 

steps to come to a probabilistic approach with a decision tool 

as main result. 

2. Case study: approach and variables 

We consider an old brick wall with a cavity and a concrete 

floor slab which is anchored to the outer leaf as in Fig. 1. 

This is a common construction method for the first cavity 

walls in the 50’s and 60’s. There is no rain penetration into 

the concrete slab. The inside surfaces are finished with 

plaster and a floor decking. The rooms above and below the 

considered slab are assumed to be bedrooms. In this example, 

we consider three types of insulation material that can be 

used to fill up the empty cavity wall: PUR foam, EPS 

granules and mineral wool. 

This case study illustrates the possibilities of a probabilistic 

methodology. To do so, we focus on the total heat loss in 

January and the yearly risk of mould growth in the upper 

corner of the lower bedroom, as these parameters indicate the 

energy use and one of the additional hygrothermal side 

effects. 

 

Fig.  1. Old brick wall with cavity 
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Table 1. Distributions of variable input parameters 

2.1 Model 

The heat and moisture response of the construction for one 

reference year were calculated with the use of the finite 

element code HAMFEM (Janssen 2007). Evaluation of the 

risk of mould growth is based on the isopleths of (Sedlbauer 

2002). To take into account all stochastic variables a Monte 

Carlo simulation was implemented into the HAMFEM-code.  

A Monte Carlo analysis aims to quantify the probability 

distributions of the preferred outputs by repeating the 

simulation several times while varying the values of the input 

parameters according to their probability density functions 

(pdf). Because a Monte Carlo simulation tends to be time 

consuming, an advanced sampling technique was applied 

(Janssen 2012). 105 samples were created with a space-

filling, non-collapsing sampling scheme – maximin Latin 

Hypercube - (Husslage 2008). A Latin Hypercube design 

aims to optimally spread the samples for each of the input 

parameters. A ‘maximin’ design continues on that and aims to 

spread the samples as optimal as possible over the entire 

parameter space. The 105 samples were made in sets of 21 

runs, a multiple of three because of the three insulation types. 

This was repeated five times.  

For the brick and concrete slab the properties specified in the 

HAMSTAD benchmark case 4 (Hagentoft et al. 2004) are 

used. The climate used is the climate of a reference year in 

Essen, which is also used in Delphin (Delphin). 

The risk on mould growth in the upper corner of the lower 

bedroom can only be evaluated correctly by taking the 

variable indoor vapour pressure into account. To do so also 

the hygric buffering of the room enclosure is considered 

(Janssen and Roels 2009). If we then assume ideal convective 

mixing and no surface condensation, supposing air exchange 

for both bedrooms with the exterior environment only, and 

neglecting the temperature dependency of the air density, the 

moisture balance for the room air can be written as 

(Vereecken et al. 2011): 
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with V (50 m³) the volume of the room, Rv (462 J/kgK) the 

gas constant for water vapour, Ti (K) the indoor air 

temperature, HIR* (kg/m³%RH) the production-interval 

adapted hygric inertia per cubic meter of room volume, 

pv,sat(Ti) (Pa) the partial vapour saturation pressure for 

indoor temperature Ti (K), pvi/e (Pa) the partial vapour 

pressure of indoor/outdoor air, n (1/h) the air change rate per 

hour, V/RvTi (m³kg/J) the moisture capacity of the zone air 

and Gvp (kg/s) the indoor vapour production set at 120 kg/s 

between 22h and 6h and 10 kg/s between 6h and 22h, 

corresponding to the moisture production in a two-persons 

bedroom. 

2.2 Input parameters 

The type of insulation and the thickness of the cavity wall are 

two of the stochastic parameters, which have to be considered 

in the model. In addition, the orientation of the wall is of 

influence as solar radiation and driving rain is taken into 

account. The user behaviour is also very variable. The inside 

temperature, the hygric inertia of the rooms and the air 

change rate are related to the users.  

As seen in Table 1, the model has 6 variable input 

parameters. The other material properties and boundary 

conditions are deterministic and not described in this paper 

because the focus is on the probabilistic approach and not on 

the hygrothermal model. 

2.2.1 Insulation 

Three types of insulation are considered: PUR foam, EPS 

granules and mineral wool. Each of them has their own 

thermal conductivity, bulk density, thermal capacity and 

vapour diffusion. The thermal conductivity is not a 

deterministic value as this is influenced by workmanship. The 

mean value and spread on this mean are different for all 

insulation materials as some materials cause more execution 

difficulties as other materials. The distributions are shown in 

Fig. 2a. The mean values are based on measurements 

(Delghust 2010), but since only a limited amount of 

measurement points were available, a normal distribution is 

assumed. 

2.2.2 Thickness of cavity 

When a cavity wall is injected with insulation, besides the 

thermal conductivity of the insulation material, the thickness 

of the cavity determines the thermal resistance of the wall. 

The thickness is often not known. Therefore, in this case, it 

varies between 2 and 6 cm in steps of 1 cm. 

2.2.3 Orientation of the wall 

We do not impose restrictions on the orientation of the wall. 

Therefore, the value of the 'wall orientation' parameter can be 

anything with equal probability in the range 0 to 360 degrees 

as measured from the north.  

2.2.4 Inside temperature 

Because inside temperature is determined by user behaviour, 

it can not be assigned a deterministic value. Therefore, we 

assume that the inside temperature is constant and normally 

distributed around 18 °C with a standard deviation of 1 °C. 

The fact that people will often open windows when it is warm 

outside is included in the model by a simple algorithm: when 

the outside temperature is higher than the inside temperature, 

we fix the inside temperature to be the same value as the 

outside temperature. 

Parameter Distribution* 

Lambda-value (W/mK) PUR: N(0.04,0.004) 

EPS: N(0.10,0.018) 

MW: N(0.06,0.010) 

Thickness of cavity (cm) D(2,6) 

Orientation of the wall (degrees from 

North) 

U(0,360) 

Inside temperature (°C) N(18,1) 

Hygric inertia (kg/m³%RH) N(0.59,0.15) 

Air change rate (1/h) D(0.1,0.6) 

* Explanation of the symbols used: 

N(,): normal distribution with mean value  and standard 

deviation 

D(a,b): discrete uniform distribution between a and b 

U(a,b): uniform distribution between a and b 



 

(a) Thermal conductivity of insulation (b) Thickness of the cavity  (c) Orientation of the wall 

 

 (d) Inside temperature   (e) Hygric inertia   (f) Air change rate 

 

Fig.  2. Distributions of input parameters - given distribution compared to created distribution 

 

2.2.5 Hygric inertia 

The production-interval adapted hygric inertia HIR*, as seen 

in Eq. (1), is considered as a normal distribution with mean 

value 0.59 kg/m³%RH and standard deviation 0.15 

kg/m³%RH. This takes the moisture buffering of the building 

enclosure into account (Janssen and Roels 2009). 

2.2.6 Air change rate 

Both bedrooms are ventilated by natural ventilation by 

opening the windows and due to air leaks in the building 

envelope. This ventilation rate is dependent on user 

behaviour. Per Monte Carlo run the ventilation rate is taken 

constant with a rate between 0.1 and 0.6 changes per hour 

with steps of 0.1 per hour. When the outside temperature is 

high, people tend to open windows. Therefore, when the 

outside temperature is higher than the inside temperature, the 

ventilation rate is set to 1 per hour. Note that the air change 

rate only intervenes to calculate the indoor vapour pressure 

(Eq. 1) and not the indoor temperature. 

2.2.7 Comparison of the given and created distributions 

Fig. 2 compares the distributions based on the 105 samples 

created with the ‘maximin’-design with the given 

distributions of the input parameters. A good agreement is 

observed. Therefore, the output will be representative.   

3. Uncertainty analysis 

As mentioned in section 2, we choose to focus on the total 

heat loss in January and the risk of mould growth in the upper 

corner of the lower bedroom for a reference year. Both 

performances are predicted by the Monte Carlo simulation 

and indicate the energy use after retrofitting and the 

additional hygrothermal side effects.  

Fig. 3 shows the distribution of the total heat loss per meter 

construction node in January. One meter construction node 

corresponds to 1.31 m² façade (Fig. 1). The distribution has a 

mean value of 37 kW/m construction node. Fig. 4 shows the 

distribution on the amount of hours with a risk of mould 

growth, with a mean value of 344 hours. This distribution is 

based on the isopleths of (Sedlbauer 2002), see e.g. Fig. 5, 

which shows the coupled temperatures and relative 

humidities per hour in the upper corner of the lower bedroom 

for the first run of the Monte Carlo simulation, in this case 

with 6cm PUR. The values of the remaining parameters are 

randomly drawn from the distributions mentioned in section 

2.2 as well. It is assumed that when the coupled temperature 

and relative humidity exceed the limit, mould growth can 

occur. The distribution of the sum of all exceeding hours is 

plotted in Fig. 4. 

The results show the importance of a probabilistic approach. 

A deterministic calculation would be dependent on the 

chosen input parameters and would lead to results that can 

not be generalized, corresponding namely only to one point 

of the obtained distribution.  

4. Decision instrument 

Based on the methodology presented in this paper, one can 

create a decision instrument like Fig. 6 and Fig. 7, which 

compare the different solutions for cavity filling. The 

different approximations of a normal distribution are shown. 

This is a more objective way to choose which retrofit solution 

should be preferred. For the case analysed, when looking at a 



 

 

 

 

 
Fig. 3. Distribution total heat loss January 

 
Fig. 4. Distribution total hours of mould risk 

 

Fig. 5. Isopleth with coupled temperatures and relative 

humidities as calculated for one of the Monte Carlo runs 

(6cm PUR) 

 

minimum heat loss with the risk of mould growth as low as 

possible, we would choose PUR as insulation material. In this 

case, PUR has the lowest mean value for both heat loss and 

risky hours, respectively 32 kW/m construction node and 333 

hours of risk. PUR also has the smallest standard deviation 

for heat loss, which means that we are more certain of the 

obtained retrofitting result, corresponding  more or less to the 

mean value. 

The results show that for this academic case using PUR 

provides the best results in general. It might be interesting to 

also investigate the results for different cavity thicknesses. 

Fig. 8 shows the distribution of the risk of mould growth for 

the different thicknesses of PUR. We would expect that the 

risk of mould growth increases when the thickness decreases. 

Unfortunately, this is not entirely what we see. Because of the 

‘maximin’ algorithm, one has to be careful with subsampling. 

The given distribution has to be approached by the 

subsamples to have reliable results, which is not the case for 

Fig. 8. To overcome this, enough samples are needed or the 

preferred parameter has to be excluded from the ‘maximin’ 

design.  

Of course we need to take all side effects into account if we 

would like to have an overall decision instrument to assess 

the balance between energy use and all possible risks. If we 

are able to gather all risks and their hygrothermal behaviour 

in a probabilistic model, we could make a reliable decision. 

This kind of decision tool should be expanded with life cycle 

costs of the retrofitting options.  

 
Fig.  6. Decision instrument: normal distributions of total 

heat loss for different insulation types 

 
Fig.  7. Decision instrument: normal distributions of total 

hours of mould risk for different insulation types 

5. Sensitivity analysis and discussion 

Comparing Fig. 6 with Fig. 2 learns us that the distribution of 

the insulation type has a large impact on the heat loss. As the 

distributions are now based on a limited number of 

measurements, this means that more measurements would be 



 

 

 

 

 
Fig.  8. Decision instrument: normal distributions of total 

hours of mould risk for different thicknesses of PUR 

needed to increase the accuracy of the distributions and hence 

the reliability of the output. 

To investigate the most important variables (those variables 

for which a reliable input distribution is crucial), a sensitivity 

analysis can be performed. One of the most visual methods is 

the use of scatter plots (Hamby 1994). This method plots one 

output parameter against one input parameter to analyse the 

correlation between them, as can be seen in Fig. 9 and 10.  

As concluded before, the insulation type (Fig. 9a), the 

thermal conductivity and the thickness of the cavity (Fig. 9b) 

are influencing parameters for the total heat loss in January. 

As can be expected, the orientation is important as well (Fig. 

9c). Fig. 10d shows that there is a high correlation between 

the inside temperature and the risk of mould growth. As seen 

before, the insulation type is also an influencing parameter 

(Fig. 10a). 

This way, for real cases, a sensitivity analysis beforehand 

could help to reduce the amount of variable parameters to 

take into account. As the needed number of runs for a Monte 

Carlo analysis based on basic random sampling is defined by 

the internal standard deviations (Wikipedia 2011), the needed 

number of runs won’t be reduced while reducing the amount 

of input parameters. However, reducing the amount of 

parameters will also reduce the needed number of runs for a 

‘maximin’ design as the design for a certain number of 

samples is more uniform for fewer dimensions (Fang 1980). 

Moreover, in some cases it can be valuable to check for 

which parameters a distribution is needed, because collecting 

all distributions for all parameters is very time consuming. 

 

 

 

 

 

 

(a) Type of insulation   (b) Thickness of the cavity  (c) Orientation of the wall 

 

 (d) Inside temperature   (e) Hygric inertia   (f) Air change rate 

Fig.  9. Scatter plot for correlation between input parameters and total heat loss in January 



 

 

 

 

 

(a) Type of insulation   (b) Thickness of the cavity  (c) Orientation of the wall 

 

 (d) Inside temperature   (e) Hygric inertia   (f) Air change rate 

Fig.  10. Scatter plot for correlation between input parameters and total hours of mould risk 

 

6. Probabilistic methodology 

The previous case study illustrates the importance of a 

probabilistic approach. One of the main applications is a 

decision tool as described in section 4. This is the most 

objective way to select a retrofitting option with the highest 

energy savings and the smallest risks on hygrothermal side-

effects. To come to a decision tool for one specific case, the 

following steps are needed: 

1. Hygrothermal risks. One needs to decide which 

hygrothermal risks need to be taken into account. 

Here, one can rely on knowledge of experts. It is 

important to use the correct hygrothermal models to 

evaluate the risks.  

2. Input parameters. One needs to decide which 

parameters need to be taken into account. If one is not 

sure whether a parameter is important or not, it’s 

better to take this into account at first instance and 

drop after the sensitivity analysis (step 4). 

3. Distributions. One needs distributions for all input 

parameters chosen in step 2. However, they don’t need 

to be very accurate. It’s enough that they match the 

whole range of possible values. 

4. Sensitivity analysis. A Monte Carlo simulation, as 

explained in section 2.1, calculates distributions for 

the output parameters which are dependent of the 

selected case. One can plot the output parameters 

versus the input parameters, as described in section 5, 

based on this Monte Carlo simulation. Other 

sensitivity analysis methods are possible as well. 

Based on these result one can decide which 

distributions have to be investigated. 

5. Distributions. To gather all necessary distributions, a lot 

of measurements are needed. However, some of them 

can be drawn up by the knowledge of an expert on the 

proposed case. 

6. Uncertainty analysis. A Monte Carlo simulation is 

repeated to investigate the distributions of the output. 

One needs to check how many runs are necessary to 

have a reliable result. Stopping criteria are needed to 

do so. Based on the output different decision tools can 

be created. Of course other methods are possible as 

well. Calculation time is a very important criterion in 

this decision. 

7. Decision tool. Based on the results of the uncertainty 

analysis, one can start developing a decision tool 

which takes all the uncertainties, all risks and all life 

cycle costs into account. Adding the life cycle costs 

should allow making an objective decision to choose 

between different retrofitting options.  

 

Conclusions 

Retrofitting old buildings is becoming more and more 

common. Unfortunately, at the moment, it is difficult to 

predict the actual energy savings and there might also be a 

risk of hygrothermal failure when applying certain retrofit 

measures. This paper illustrates the importance of a 

probabilistic approach and introduces a decision tool to 

estimate the balance between risks and energy savings. The 

aim of this paper was not to give correct solutions, but to 

show the possibilities of the developed methodology. This 

method makes it possible to choose the solution with the least 

side effects and the best energy savings.  

As input distributions are mostly unknown, more research is 

needed here. The distribution of the input has a large 

influence on the outcome. Without these input distributions 

one can’t get a reliable decision tool. A sensitivity analysis 

beforehand could help to reduce the amount of parameters to 

take into account.  
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